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Abstract

Machine comprehension is an integral
piece in the quest for general artificial
intelligence. Recently published mod-
els have utilized attention mechanisms to
achieve promising results on question an-
swering datasets such as SQuAD. In this
paper, we attempt to extend these mod-
els to the MS MARCO dataset in order
to build a general question answering sys-
tem, capable of tapping into the knowl-
edge held within a wide array of internet
documents.

1 Introduction

Traditionally, search engines have focused on re-
ferring people to web pages with answers to their
questions. More recently, some search engines
have begun to directly answer simple, factual
questions using curated databases of basic knowl-
edge.

Figure 1: Google directly answers the question
‘what is the radius of the earth?’

However, current approaches to question an-
swering are rigid and limited to encyclopedic
questions. What if we could create a system that
could utilize the entirety of the public internet
to answer complex questions spanning the sum

of human knowledge? This would be the holy
grail of question answering. It would revolution-
ize search engines, personal assistants, and other
artificial intelligence products.

Recent advancements in machine comprehen-
sion have made it possible to create a basic ver-
sion of such a system. In October of 2016, the
Stanford Question Answering Dataset (SQuAD)
was published, which contains over 100,000 ques-
tions based on over 500 Wikipedia articles. When
SQuAD was released, it was significantly larger
than previous reading comprehension datasets.
However, since SQuAD is based on a relatively
small and well curated set of Wikipedia articles, it
is a poor choice for training reading comprehen-
sion models for the entire public internet.

At NIPS 2016, Microsoft released the MS
MARCO (Microsoft MAchine Reading COmpre-
hension) dataset. Questions in the MS MARCO
dataset are sampled from real-world Bing queries,
and answers are human-generated based on ex-
cerpts from Bing search results. This makes MS
MARCO the most promising dataset so far for
training general purpose question answering mod-
els.

Recent research into recurrent neural networks
and attention mechanisms has resulted in con-
siderable improvements to machine comprehen-
sion models. Models such as BiDAF (Seo et al.,
2016) and Dynamic Coattention Networks (Xiong
et al., 2016) have achieved impressive results on
the SQuAD dataset and pushed the state of the art
forward. In this paper, we hope to adapt these and
other models to the more complex MS MARCO
dataset, with the goal of creating a truly general
purpose question answering system with access to
the entirety of human knowledge.



2 MS MARCO Dataset

To create the MS MARCO dataset, people were
shown real Bing search queries along with pas-
sages extracted from the top Bing search results.
They were then asked to select the relevant pas-
sages and use them to answer the question.

The MS MARCO dataset contains 102,023
question-answer pairs with a train-validation-test
split of approximately 80-10-10. There are be-
tween 1 and 12 passages for each question with
an average of 8.2. Passages are between 19 and
1,167 characters in length, with an average of 422.
There are an average of 1.07 ‘selected’ passages,
passages marked as the source of the answer, for
each question. Virtually all of the dataset is in En-
glish.

Unlike previous reading comprehension
datasets like SQuAD, the answers in MS MARCO
may not come directly from the context passages.
Only about 60% of answers are contained in the
context passages verbatim. This presents a unique
and novel challenge, since models must have
some generative capabilities in order to achieve
high performance on the MS MARCO dataset.

Questions are separated into five types based on
the form of their answer. These labels are pro-
vided for all questions, including those in the test
dataset.

• Description (54.6%)

– e.g. What is vitamin A used for?

• Numeric (27.6%)

– e.g. How long does it take for a pulse of
laser light to reach the moon?

• Entity (10.4%)

– e.g. What is a hummingbird moth?

• Location (4.9%)

– e.g. Where do Roseate Spoonbills live?

• Person (2.5%)

– e.g. Who first invented the anemometer?

Of these question types, description questions
are both the most common and complex. De-
scription answers commonly synthesize informa-
tion from multiple passages and are only taken
verbatim from the context passages 54% of the
time, versus 68% for non-description answers.

Answers to description questions can also have
much more variability than those to other types
of questions. For example, there are thousands of
correct answers to the question ‘What is vitamin
A used for?’ which makes training a model for
MS MARCO even more complex. This variabil-
ity in humans answers explains why humans can
only achieve Bleu-1 scores of 46/100 and Rouge-
L scores of 47/100 on the validation set, which is
quite low.

3 Methods

We viewed this project as having two main mod-
ules, the answer extractor and the passage rele-
vance model. The answer extractor is given a pas-
sage and a query, and is expected to find the an-
swer to that query within the given passage. The
passage relevance model ranks passages according
to how relevant they are to the given query.

The output of the answer extractor is simply the
predicted start and end index of the answer in the
text. Along with these indexes, we can also ex-
tract the probabilities of those indexes by taking a
softmax of the logits produced by the model.

To pick the final answer for the query, we pass
each of the passages through the answer extractor.
From this we get the probability of the start and
end indexes of the answer within each individual
passage. Define P (sp = i) and P (ep = j) as the
probability of the start and end indexes of the an-
swer at i and j respectively, within passage p. We
also pass through each passage to the passage rel-
evance model to get its relevance weight, wp. To
pick the best answer, pick the passage and indexes
with the following formula:

arg max
p,i,j

(wp · P (sp = i) · P (ep = j))

3.1 Training
The only training in the model takes place within
the answer extractor. Therefore, we trained the
answer extractor separately on queries with sin-
gle passages before using it in our multi-passage
model. Since many of the answers to the queries
cannot be found verbatim within the passages, we
had to filter the training data. To do this, we
selected only samples that had its answer con-
tained verbatim within a ‘selected’ passage. A se-
lected passage is one which contained a 1 within
its is_selected field within the dataset. The



reason the passage must have been selected is be-
cause we needed to ensure that the answer is used
in the correct context. For example, if the query is
‘where is the Space Needle?’ and the true answer
is ‘Seattle’, we would not want to train the model
on a passage that happened to mention Seattle but
had no reference of the Space Needle. It would
only confuse the model.

In addition to filtering the training data, we de-
cided to train five separate models for the five dif-
ferent query types. Each of the different query
types have distinctive patterns of where the answer
falls in the passage, and by training five separate
answer extractors, the model can exploit these pat-
terns. One disadvantage to this approach is that we
are further reducing the training data that each an-
swer extractor uses. Since we were limited with
our resources and time, this was a trade-off we
were willing to take.

3.2 Word Embeddings and Unknown Tokens

The first step in each of the answer extractor mod-
els is to convert the tokenized text into a series of
word-level embeddings. To reduce the complex-
ity of the model, we utilized pretrained GloVe em-
beddings (Pennington et al., 2014). In order to ex-
periment with different word embedding sizes, we
primarily stuck with the Wikipedia + Gigaword
word embeddings which had sizes 50, 100, 200,
and 300. The vocabulary size for each of these
sets of embeddings is 400,000.

Query Type Val Unk % Test Unk %
Person 1.969 1.926
Location 2.134 1.990
Numeric 2.110 2.099
Entity 1.802 1.803
Description 1.917 1.915

Table 1: Percentage of unknown word in each
query type

Even with a large vocabulary, there is still a
good portion of the words that do not have cor-
responding pretrained embeddings. Displayed in
table 1 is the percentage of unknown tokens in
the multi-passage datasets. Instead of embedding
these words as the zero vector, we implemented
special, trainable, unknown vectors that represent
particular unknown classes. The four that we set-
tled on were:

• numeric: unknown token that contains a
number in it

• punctuation: unknown token entirely consist-
ing of punctuation

• alphabetic: unknown token made up of letters
a-z (often rare nouns or misspellings)

• wildcard: unknown token that does not match
the above classes

Figure 2: Percentage of unknown classes for each
query type

In figure 2 we see the distribution of unknown
tokens of the different query types across our de-
fined unknown classes. In all but the numeric
dataset, the majority of the unknown tokens fell
into the wildcard class. This means that most
of the unknown tokens are some combination of
alpha-numeric characters with some sort of punc-
tuation, or even some sort of foreign language
or unicode characters. If given more time, other
classes we would have liked to experiment with in-
clude capitialized words, foreign language words,
numerical tokens with units, years, zip codes etc.

3.3 Answer-Extractor Models

We found that the answer extractor model is some-
what well defined with many papers written on the
subject. In fact, The Stanford Question Answer-
ing Dataset (Rajpurkar et al., 2016) leaderboard
provided many of these papers. The difference
between the SQuAD and MS MARCO datasets
is that for SQuAD, each sample contains multi-
ple queries given a single passage, while with MS
MARCO, each sample contains multiple passages
given a single query. Therefore we based our ad-
vanced answer extractor models on the previous
work for the SQuAD dataset.



3.3.1 Baseline
For our baseline model, we started with a very
basic design. The model has two bi-directional
GRU RNNs. The first RNN takes a matrix of the
word embeddings of the question: Q ∈ Rd×J ,
where d is the size of the word embeddings and
J is the maximum question length. The second
RNN takes the word embeddings of the context:
X ∈ Rd×T , where T is the maximum context
length. The output of each RNN is the concate-
nation of the backward and forward hidden states
of that RNN, hence we obtain two matrices: U ∈
R2d×J from the question RNN, and H ∈ R2d×T

from the context RNN. U is a matrix representing
a vector for each word in the question, such that
U = [q1...qJ ]. The question representation we
later consider is an average of the different word
vectors outputted from the question RNN:

q̄ =
1

J

J∑
i=1

qi

The question representation q̄ and the output of
the context RNN H are concatenated and inserted
in a third bi-directional dynamic GRU RNN.
Then, we have a dense output layer that takes the
output of the third RNN. From the output layer we
get the logits for the starting and ending indices
of the answer, from which we take the arg max.
All three RNNs have a dropout as a regularization
technique to reduce overfitting during training.

3.3.2 Attention
The attention model is very similar to the baseline
model. The only difference is in defining the ques-
tion representation q̄ that we use in the third RNN.
Before, we used to average the different word vec-
tors we’re getting from the question RNN. In the
attention model, for each context word xk we get
a question representation q̄k which is a weighted
average with trained weights:

q̄k =
1

J

J∑
i=1

pk,iqi

such that
∑

i pk,i = 1. The attention weights
are learned with a softmax and a dense layer:

pk,i = softmax(W[xk;qi;xk ◦ qi] + b)

where ◦ is the element-wise product and ; is row-
wise concatenation.

Figure 3: The Baseline and the Attention model

3.3.3 Coattention
The main component of the coattention model is
the coattention encoder, an attention mechanism
that accounts for the important words in the pas-
sage in light of the question, and the important
words in the question in light of the passage. In-
tuitively, this is like reading the question first and
then searching the passage for the answer by look-
ing for words that seem particularly relevant. In-
stead of the dynamic decoder proposed in the Dy-
namic Coattention Networks (Xiong et al., 2016),
we used a simple dense layer for each the start and
end outputs. We found that the iterative approach
would be ideal in theory but we could not get it to
converge nicely. Further details on the implemen-
tation can be found here.

3.3.4 BiDAF
BiDAF is a model designed by the University of
Washing and Allen Institute of Artificial Intelli-
gence (Seo et al., 2016) which performed very
well on the SQuAD dataset. The BiDAF model
consists of six layers, of which we implemented
five: word embedding, phrase embedding, atten-
tion, modeling, and output. Given more time,
we could also implement the character embedding
layer. Further details on the implementation can
be found here.

3.4 Passage Relevance

With the passage relevance model, there were mul-
tiple different directions to take it. Since the pas-
sages for each sample all contained very similar
tokens, we struggled to find training data and train
a model that could pick out just the single pas-
sage that is relevant to the queries. In addition,
since the answer is commonly contained in mul-
tiple passages, there are opportunities to exploit
this when considering all the passages. Therefore,

https://arxiv.org/abs/1611.01604
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the best option was to have a model assign a rel-
evance weights to each passage and then rank the
passages based on their weights.

3.4.1 TF-IDF
Term frequency-inverse document frequency, or
TF-IDF for short, is a numerical statistic that rep-
resents how important a word is to a document in a
corpus. The statistic counts the number of occur-
rences of a particular word in the document and
then offsets it by how often the word appears in
the corpus. We relied on this statistic to determine
how relevant a passage is to the given query, com-
pared to the other passages provided.

Define tf(t, d) to be the term frequency of term
t in document d. Most of the time this is simply
the number of times t appears in d, but we tweaked
it to be a binary variable indicating if the term ap-
pears or not in the document. Since every passage
is relevant to the query in some way, we just want
the ones that contain the key words the query is
looking for. Next, define idf(t,D) to be the in-
verse document frequency of term t in corpus D.
idf(t,D) is calculated by:

idf(t,D) = log

(
N

dft

)
where N is the number of documents in D, and
dft is the number of documents in D that contain
t. Finally, the TF-IDF value can be calculated for
a term t in document d within corpus D:

tfidf(t, d,D) = tf(t, d) · idf(t,D)

For the model, we compute the TF-IDF matrix,
where the first row is the query, and each subse-
quent row is a passage, and each column is a word
in the vocabulary. Once the matrix is computed,
rows can be compared with any similarity metric.
We decided to use a linear kernel, which through
experimentation, gave us the best results.

To compute the passage relevance weights,
compute the similarity of the first row (the query)
with each of the other rows (the passages) in the
matrix. Finally, normalize the weights so that they
sum to one.

3.5 Evaluation
To evaluate the performance of the model, Mi-
crosoft has released evaluation scripts for the MS
MARCO dataset 1. Given both the true and pre-

1The evaluation scripts can be found on MS MARCO’s
website: http://www.msmarco.org/submission.aspx

Model Bleu-1 Rouge-L
ReasoNet Baseline 14.83 19.20
R-Net (Leader) 42.22 42.89
Human Performance 46.00 47.00

Table 2: MS MARCO benchmark performances

dicted answers, the scripts output the Bleu-1 and
Rouge-L scores. The Bleu-1 score measures the
precision of unigrams, while the Rouge-L score
measures the recall of the longest co-occurring in
sequence n-grams. In other words, the Bleu score
is how much of the words in the predicted an-
swers appeared in the reference answers, while the
Rouge is how much of the words in the reference
answers appeared in the predicted answers. Cap-
tured in table 2, are benchmark performances at
the time of writing this paper.

4 Results

4.1 Answer-Extractor Results

Model Bleu-1 Rouge-L
Baseline 46.6 53.8
Attention 52.6 51.8
Coattention 50.6 57.0
BiDAF 53.9 57.6

Table 3: Answer extractor results on selected pas-
sages

Feeding the answer extractor just the selected
passages for each sample, we used the evaluation
scripts to score how well the answer extractors did.
These results are display in table 3. Clearly the
more complex the model became, the better the
result became as well. Consequently, what it came
down to was how much would the multiple pas-
sages affect these results? With the multiple pas-
sages, there is much more noise surrounding the
answer, as well as variation on how the answer ex-
pressed.

4.2 Passage Relevance Results
Our passage relevance model selects the ‘selected’
passage as the most relevant just 20.2% of the
time. Although this is quite low, often times the
answer is contained in more than just the selected
passage, so this is alright. Analyzing the cumu-
lative accuracy of the model in figure 4, it can
be noted that the passage relevance model gives



Figure 4: Passage relevance ranking accuracy

at least somewhat of an advantage over random
ranking. The model does a nice job in particular
burying irrelevant passages at the bottom of the
ranking. Since our TF-IDF calculations are using
binary variables for the term frequencies, multiple
passages score similarly compared to each other.
This is by design in our model. We want the an-
swer extractor confidence to play a large role in
selecting the answer, not being overshadowed just
because a particular passage uses key terms more
than others.

4.3 Multi-Passage Results

Model Bleu-1 Rouge-L
Baseline (Microsoft’s) 14.83 19.20
Baseline (Ours) 28.92 26.88
Attention 25.88 25.01
Coattention 26.56 25.48
BiDAF 29.22 26.30

Table 4: Multi-passage results

Combining the answer extractor and passage
relevance models together, we now evaluated our
multi-passage model. The resulting scores of the
four models are displayed in table 4. Quite sur-
prisingly, we did not see the same trend as we did
in the answer extractor models. We believe this is
due to the different probability distributions pro-
duced by the different models. The more complex
models may have produced more confident pre-
dictions for irrelevant or shorter passages. Since
our method for selecting the final answer out of
the multiple candidate answers does not account
for this, the results from the more complex multi-
passage models suffer.

Drilling further into what produced these re-
sults, we analyzed the performance of the models
on the different query types (table 5). The first
thing to note is that no one model performed the
best for every answer type. While the baseline
model produced the most consistent results, each
model had its strong suit. In addition to this, one
other trend to note is how the larger the dataset
was, generally the better results. This is a conse-
quence of our decision to train five separate an-
swer extractors for the five query types. The de-
scription answer extractors produced much better
results than the person type, despite the larger vari-
ation. We believe this is because of the fact that
the description answer extractors had much more
training data to learn from. To account for this,
something to look into in the future may be meth-
ods involving transfer learning, having the main
answer extractor look at every query type, and
appending layers to the model for the particular
query types.

4.4 Error Analysis

Through analyzing the answers given by our mod-
els, we have identified several sources of error,
which are enumerated below. Some of these er-
rors would be relatively simple to address given
more time, while others would require a signifi-
cant amount of further research to fix.

4.4.1 Lack of Comprehension
This is the most glaring problem with our model,
and also the most difficult to solve. In many
cases, our model produces probable but incorrect
answers. It recognizes patterns but fails to com-
prehend enough about the question and context to
produce correct answers. For example, figure 5
shows how the baseline model provides a proba-
ble but incorrect answer.

Figure 5: Answer from the baseline model for the
question ‘Average hours of sleep college students
get.’



Bleu-1
Query Type Baseline Attention Coattention BiDAF
Person 16.32 19.05 20.43 13.86
Location 23.26 27.61 21.87 20.88
Entity 25.84 18.99 23.51 16.91
Numeric 17.27 15.72 18.29 14.43
Description 28.17 25.37 26.56 28.96

Rouge-L
Query Type Baseline Attention Coattention BiDAF
Person 29.91 26.06 26.21 24.21
Location 24.86 27.40 23.61 23.89
Entity 22.51 19.33 20.28 18.00
Numeric 29.53 28.49 29.61 30.39
Description 26.27 23.59 24.05 25.97

Table 5: Multi-passage results on individual query types. Numbers in bold highlight best results for each
query type.

4.4.2 Answer Length
The correct level of detail for an answer is subjec-
tive and varies significantly across questions. For
example, figure 6 shows three possible answers to
the question ‘What is the pay scale for medical
secretary?’. The first, and shortest, includes just
the median salary. This answer is acceptable, but
doesn’t fully answer the question. The next an-
swer includes the average, median, minimum, and
maximum salaries for medical secretaries, while
the last includes the same information as well as
hourly pay rates. In this case, the ”correct” an-
swer is entirely subjective and depends on what
exactly the user is searching for. There is no sim-
ple fix to balance precision and recall like this; it is
a complex problem that will be a persistent source
of error for any question answering system.

4.4.3 Passage Relevance
When using only the passages which contain an-
swers, our models achieve scores similar to those
at the top of the MS MARCO leader board. When
we introduce irrelevant passages, those scores
drop significantly. Our model for predicting pas-
sage relevance generally selects passages that con-
tain some answer to the provided question. The
problem is that the passages that it selects may not
be the same ones that were selected when the MS
MARCO dataset was created. A more complex
neural model might be able to achieve higher per-
formance on passage relevance, but the variability
of human answers will still be a significant source

Figure 6: Answer from the coattention model for
the question ‘What is the pay scale for medical
secretary?’

of error for any model trained on this dataset.

4.4.4 No Answers

In some cases, our model produces no answer
whatsoever. When selecting an answer, we have
the probability that the answer starts and ends on
each token. Our generated answer starts with the
most probable start token and ends with the most
probable end token. When the most probable end
precedes the most probable start, we return no an-
swer. There are many simple fixes to this issue,
some lie within the answer extractors themselves,
other in the way we select the final answer.



Figure 7: The attention model provides no an-
swer to the question ‘What type of substance is
ephedrine?’ because the most probable start token
precedes the most probable end token.

4.4.5 Numeric Answers
Our model has little understanding of numeric val-
ues, which poses a significant problem since more
than one quarter of MS MARCO questions are nu-
meric. Our models have no understanding of scale
and how units relate. We are completely depen-
dent on how well the GloVe embeddings can en-
code how well units relate, which we suspect is not
great. In addition to this, since the models are just
looking for patterns within the passages, they do
not understand if a particular number fits the ap-
propriate numeric range for the answer. To solve
this problem, we would have to investigate how
to better encoding the relation between units and
scale.

5 Related Work

Microsoft Research Redmond (Shen et al., 2016)
achieved state-of-the-art performance in multiple
reading comprehension datasets and performed
well in the MS MARCO dataset. ReasoNet, their
model, uses a multi-turn process, in which it re-
peatedly processes the context and the question
after digesting intermediate information, with dif-
ferent attention weights in each iteration. Re-
sults show that multi-turn reasoning have gen-
erally outperformed single-turn reasoning, which
basically utilizes an attention mechanisms to em-
phasize specific parts of the context that are rele-
vant to the question. Moreover, ReasoNet uses re-
inforcement learning to dynamically decide when
to terminate the inference process in reading com-
prehension tasks.

Microsoft Research Asia (Wang et al., 2017)
currently have the best performance in the MS
MARCO leader board. Their model, Predic-
tion, uses an end-to-end neural network based on
Match-LSTM and Pointer Net. Match-LSTM is
used to predict textual entailment, where given
two sentences, a premise and a hypothesis, it pre-
dicts whether the premise entails the hypothesis.
Pointer Net generates an output sequence whose
tokens come from the input. Microsoft Research
Asia propose two ways to use Pointer Net: a se-
quence model, which outputs pointers to the to-
kens of the answer in the context, and a bound-
aries model, which outputs pointers boundaries
(first and last tokens) of the answer in the context.

6 Conclusion

We proposed a machine comprehension model
that is able to take in multiple passages and a
query, and produce an answer to the question. Our
model consists of two main modules, the answer-
extractor and the passage relevance model. On
the MS MARCO dataset, the model surpassed
baseline performance posted by Microsoft Re-
search and started to approach other competi-
tors. With more time to refine the model, and ex-
periment with different approaches, now that we
have become acquainted with the field, we feel
that we could really compete with some of the
more advanced models from more experienced re-
searchers.

With less than 10 weeks to ramp up and learn
deep learning with no prior experience, learn
TensorFlow, and put together an advanced ques-
tion answering system, we feel we produced re-
spectable results. Looking back, there are many
things we would have done differently and routes
that we wish we would have explored, but that is
all part of the learning process.

6.1 Future Work

Obviously, we can greatly improve upon the cur-
rent results. The first place to look is the passage
relevance model. We believe this was the largest
limiting factor for our results. Although TF-IDF
works very well in practice, that is often for re-
trieving documents from giant, broad corpora, not
for differentiating between very similar passages.
Initial ideas would be to look into other datasets
for some sort of training data for a model. Another
great place to look for models would be the Fake



News Challenge. In that task, the model is given a
headline and a body of text, and the model has to
output if the two are related or not. Adapting an
effective model from the Fake News Challenge to
our task of finding relevant passages could lead to
a great improvement in the results.

Another opportunity for improvement lies in the
fact that many of the passages contain the cor-
rect answer. If each of these passages are passed
through the answer extractor, ideally, the correct
answer will be chosen multiple times. Exploiting
this fact, we could cluster/merge similar answers
to give greater confidence to persistent answers.

7.13% of the samples contained yes or no an-
swers, this is something we chose to overlook
for the time being. In order to score well on
this dataset, this property of the data must be ad-
dressed. Initially, building a classifier to identify if
the query is a ‘yes or no’ query would be the first
step. From there, if the query is a ‘yes or no’ query,
just run the answer extractor on the query and pas-
sage to get the answer. Once we have this answer,
run it through yet one final classifier, giving it the
query and answer, and it will output either ‘yes’ or
‘no’. Although our current model answers many
of these questions correctly, it gives the detailed
answer instead of just ‘yes’ or ‘no’ and therefore
receives no credit for the answer.

The final remark addresses what we believe the
gold standard is for the model. Making quite the
jump, the ideal model would be a language gen-
erative one. Instead of just pointing to where the
answer is, the model would need to encode an un-
derstanding of the answer, and then generate the
language to express this answer. This would take
care of the many of the issue our model has, would
take much more research on the topic to create
even just a baseline model.
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